

Astroneer Modding Documentation

This documentation site includes the formal standards that mods for the game Astroneer should adhere to, but also practical
guides for actually creating mods.

If you need help feel free to check out the Astroneer Modding Discord [https://discord.gg/bBqdVYxu4k].

Formal standards can be found in the Modding standards section which includes the Metadata standard and the Index File Standard.

If you want to learn how to actually make mods checkout the Making Mods section.

Note

This site is not affiliated with System Era in any way and is exclusively community-run.
Also Astroneer has no official mod support and everything is community-built.

Contents:

	Modding standards
	General Information
	.pak Mod File Names

	Index File Standard

	Metadata standard

	Making Mods
	About Astroneer Modding
	About Astroneer

	Unreal Pak Files

	Unreal Asset Files

	File Structure and Paths

	Tools For Creating Mods

	Items in Astroneer

	Getting Help

	Setting up Modding Tools
	Setting up Folders

	Setting up unreal_pak_cli

	Extracting the Game Files

	Setting up UAssetGUI

	Opening an Asset

	Basic Modding
	How Making a Mod Works

	Setting up Folders

	Creating metadata.json File

	Finding the Asset to modify

	Modifying the Asset

	Packing the Mod

	Installing the Mod

	Verifying the mod works

	Setting up the Modding Kit
	Visual Studio

	Unreal Engine 4

	Modding Kit

	Wwise (optional)

	Generating project files

	Developing Mods

	Adding Custom Items with the Unreal Editor
	Creating the Mod Folder

	Creating an Item

	Cooking the Mod

	Picking Names
	Naming is hard

	Allowed Characters

	What you need to choose

	Author ID

	Mod Name and ID

	Mod ID extension

	Adding Missions
	Adding the Mission Trailhead

	Adding Mission Trailhead to the Mod

	Adding Mission Panels to items
	Creating the Mission Panel

	Creating & Linking the Supply Drop Points

	Result

	Diegetic UI
	Making Diegetic UI

	Adding Control Panel to the item

	Procedural Generation
	Procedural Generation

	Writing the metadata

Modding standards

Contents

	Modding standards

	General Information

Note

This site is not affiliated with System Era in any way and is exclusively community-run.
Also Astroneer has no official mod support and everything is community-built.

The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in
RFC 2119 [https://tools.ietf.org/html/rfc2119].

General Information

All mods are Unreal Engine 4 .pak files. The .pak file format is used by the Unreal Engine for storing large amounts of data in a compact space.
When placed into the %localappdata%\Astro\Saved\Paks directory, these .pak files are loaded by Astroneer as patches, or partial replacements,
of the main game assets found in the Astro-WindowsNoEditor.pak file.

Standards

	.pak Mod File Names

	Index File Standard

	Metadata standard

.pak Mod File Names

On distribution, .pak mod file names MUST follow the following format, as to facilitate the usage of mods even without a mod loader:

{PRIORITY}-{MOD ID}-{VERSION}_P.pak

	{PRIORITY} represents a 3-digit number, such as 001 or 005. Larger numbers are generally loaded later by the engine, so they always
have priority when multiple mods override the same file. Most mods will likely want to use a priority of 000 or 001, but in some cases,
higher priorities are called for. The priority levels 9xx is reserved for external applications, and MUST NOT be used by regular mods.

	{MOD ID} is any alphanumeric string representing the ID (and, roughly, the name) of the mod, as a means of distinguishing it from other mods.
Mod IDs MUST NOT contain any characters other than uppercase ASCII letters, lowercase ASCII letters, and the digits zero through nine;
as such, they also MUST NOT include any special characters, including, but not limited to, hyphens, underscores, and spaces.
Mod IDs SHOULD be formatted in upper camel case, also known as Pascal case.
A single dot is allowed to extend the Mod ID with an Author ID to distinguish Mods made by different people.

	{VERSION} represents the current revision of the mod file. The version MUST be represented by at least two numbers separated by periods,
but ultimately SHOULD be MAJOR.MINOR.PATCH .

	The _P at the end of the file’s name is a requirement for the mod to load.

Index File Standard

This file contains data and direct download URLs for one or more mods. It is used to automatically find a mod’s download link and
to facilitate auto-updating. All mod listings are contained in the mods field. Each field contains data for one mod and the
field key should be the mod_id of the corresponding mod.

As an example, here is a valid index file:

{
 "mods": {
 "ExampleMod": {
 "latest_version": "1.1.0",
 "versions": {
 "1.0.0": {
 "download_url": "https://example.com/upload/123/file.pak",
 "filename": "000-ExampleMod-1.0.0_P.pak"
 },
 "1.1.0": {
 "download_url": "https://example.com/upload/124/file.pak",
 "filename": "000-ExampleMod-1.1.0_P.pak"
 }
 }
 }
 }
}

Metadata standard

Note

If you are looking for metadata v1 standard, it has moved here.
Please note that metadata v1 standard is outdated, and it’s recommended to use metadata v2 standard.

The following describes Schema Version 2.

The metadata of mods is stored in the JSON format, as described in RFC 8259 [https://tools.ietf.org/html/rfc8259],
within a file with the name metadata.json. This file MUST be placed at the root directory within all .pak mods,
MUST be encoded in UTF-8, and MUST NOT include a byte order mark.

The following is a list of fields that can be specified within the root object of the metadata:

	schema_version: An integer that represents the current version of the metadata.json standard that is being used.
The schema version is incremented every time there is a backwards-incompatible change to the format.
This field SHOULD be specified, but if it is left unspecified, it defaults to 1, the initial version of the standard.

	name: A plain text display name for the mod. This field is represented as a string, and is REQUIRED.

	mod_id: The ID for the mod, which MUST be the exact same as the mod ID specified in the mod’s original file name, and follows the
same restrictions and recommendations described within the .pak Mod File Names section. This field is represented as a string and is REQUIRED.

	author: The author of the mod. This field is represented as a string, and is OPTIONAL, defaulting to an empty string.

	description: A plain text display description of the mod. This field is represented as a string, and is OPTIONAL, defaulting to an empty string.

	version: A version for the mod, which MUST be the exact same as the version found in the mod’s original file name,
and follows the same restrictions and recommendations described within the .pak Mod File Names section.
This field is represented as a string, and is REQUIRED.

	game_build: The Astroneer build for which the mod was built. This field is represented as a string, and is OPTIONAL. It defaults to null,
which is generally understood to mean that the mod works regardless of the current Astroneer build.

	sync: The sync mode between servers and clients. This field is represented as a string, and is OPTIONAL, defaulting to "serverclient".
Valid options are:

	none: Represents a mod which will be ignored while syncing.

	server: Represents a mod which will only be installed server-side.

	client: Represents a mod which will only be installed client-side.

	serverclient: Represents a mod which will be installed both server-side and client-side.

	homepage: A link to the homepage of the mod, a web page where users can go to to find more information about the mod or the author of the mod.
This field is represented as a string, and is OPTIONAL, defaulting to an empty string.

	download: An object with fields defining how to auto-update the mod. This field is represented as an object, and is OPTIONAL,
defaulting to {}, in which case auto-updating is disabled. These are the valid fields:

	type: The type of download. This field is represented as a string, and is OPTIONAL. Valid options:

	"index_file": This mod can be downloaded through an “index file” hosted on the web,
which contains the version info of any number of mods and their direct download web URLs.
See Index File Standard.

	url: If the type field is set to "index_file", this is set to the web URL of the mod’s index file.
This field is represented as a string, and is OPTIONAL.

	integrator: A json object containing integration sections to load into the game

	persistent_actors: A standard JSON array of asset paths to actors to bake into the level. This field is represented as an array,
and is OPTIONAL, defaulting to [].

	mission_trailheads: A standard JSON array of asset paths to mission trailheads (such as those found in the /Game/Missions folder)
to bake into the level. This field is represented as an array, and is OPTIONAL, defaulting to [].

	linked_actor_components: A standard JSON object, where the keys are game paths to Actors and the values are standard JSON arrays
that provide a list of game paths that the mod integrator will automatically attach to the specified Actors.
This field is represented as an object, and is OPTIONAL, defaulting to {}.

	item_list_entries: A standard JSON object where the keys are game paths to any asset and the values are standard JSON objects
where the keys are array names to modify in the asset and the values are standard JSON arrays which list entries to add to the specified
array as object pointers.
Alternatively, the array names to modify in the asset can be specified with the format category name.array name in order
to hone in on one particular array.
This field has a niche use, but is especially important in adding entries to commonly used item lists,
such as the list of items that a certain printer can print or the global master list that contains items that need to be referenced on
bootup for the research catalog or otherwise. This field is represented as an object, and is OPTIONAL, defaulting to {}.

	biome_placement_modifiers: Placement modifiers used for adding custom procedurally generated actors.

	dependencies: A json object containing dependencies that must be fetched for this mod to work.
Dependency version requirements follow the semver standard [https://semver.org/].

As an example, here is a valid metadata.json file incorporating all of the defined fields:

{
 "schema_version": 2,
 "name": "Coordinate GUI",
 "mod_id": "CoordinateGUI",
 "author": "ExampleModder123",
 "description": "Adds a coordinate display that toggles with the F3 key.",
 "version": "0.1.0",
 "game_build": "1.19.143.0",
 "sync": "client",
 "homepage": "https://example.com",
 "download": {
 "type": "index_file",
 "url": "https://cdn.example.com/index.json"
 },
 "integrator": {
 "persistent_actors": [
 "/Game/ExampleModder123/ExampleGUI/ExampleGUIActor"
],
 "mission_trailheads": [
 "/Game/ExampleModder123/ExampleMod/MissionTrailhead04-Example"
],
 "linked_actor_components": {
 "/Game/Character/DesignAstro": [
 "/Game/ExampleModder123/ExampleGUI/MyActorComponent"
]
 },
 "item_list_entries": {
 "/Game/InitialUnlocks_Generous": {
 "ItemTypes": [
 "/Game/Items/ItemTypes/Components/LevelingBlock"
]
 },
 "/Game/Items/BackpackRail": {
 "PrinterComponent.Blueprints": [
 "/Game/Components_Terrain/LevelingBlock",
 "/Game/ExampleModder123/ExampleGUI/ExampleItem_BP"
]
 }
 }
 },
 "dependencies": {
 "ModA": ">=1.2.0",
 "ModB": "*",
 "ModC": {
 "version": "^1.2.3",
 "download": {
 "type": "index_file",
 "url": "https://example.com"
 }
 }
 }
}

As another example, here is a valid metadata.json file containing only the "schema_version" field and the REQUIRED fields:

{
 "schema_version": 2,
 "name": "My Tiny Mod",
 "mod_id": "TinyMod",
 "version": "0.1.0"
}

Making Mods

If you want to start making mods, this is the right place.

First you will learn the basics of how Astroneer mods are structured and how to make basic mods by editing game files.
Then you will learn how to make more advanced mods by using Unreal Engine to create your own items.

Contents

	About Astroneer Modding
	About Astroneer

	Unreal Pak Files

	Unreal Asset Files

	File Structure and Paths

	Tools For Creating Mods

	Items in Astroneer

	Getting Help

	Setting up Modding Tools
	Setting up Folders

	Setting up unreal_pak_cli

	Extracting the Game Files

	Setting up UAssetGUI

	Opening an Asset

	Basic Modding
	How Making a Mod Works

	Setting up Folders

	Creating metadata.json File

	Finding the Asset to modify

	Modifying the Asset

	Packing the Mod

	Installing the Mod

	Verifying the mod works

	Setting up the Modding Kit
	Visual Studio

	Unreal Engine 4

	Modding Kit

	Wwise (optional)

	Generating project files

	Developing Mods

	Adding Custom Items with the Unreal Editor
	Creating the Mod Folder

	Creating an Item

	Cooking the Mod

	Picking Names
	Naming is hard

	Allowed Characters

	What you need to choose

	Author ID

	Mod Name and ID

	Mod ID extension

	Adding Missions
	Adding the Mission Trailhead

	Adding Mission Trailhead to the Mod

	Adding Mission Panels to items
	Creating the Mission Panel

	Creating & Linking the Supply Drop Points

	Result

	Diegetic UI
	Making Diegetic UI

	Adding Control Panel to the item

	Procedural Generation
	Procedural Generation

	Writing the metadata

About Astroneer Modding

Contents

	About Astroneer Modding

	About Astroneer

	Unreal Pak Files

	Unreal Asset Files

	File Structure and Paths

	Tools For Creating Mods

	Items in Astroneer

	Getting Help

This page will give you an overview of how Astroneer mods are structured and distributed.

Note

This site is not affiliated with System Era in any way and is exclusively community-run.
Also Astroneer has no official mod support and everything is community-built.

About Astroneer

Astroneer uses a slightly modified version of Unreal Engine 4.23.1. Modding Unreal Engine games
can be hard, but is not impossible. The modding tools that will be shown later in this guide can
simplify the process extensively, depending on the mod you are trying to make.

Doing small tweaks for stuff like power values is quite simple, but adding your own logic
or items takes a lot of time.

Unreal Pak Files

All mods (or at least what we are focusing on) are Unreal Engine 4 .pak files.
These files are comparable to .zip files. They store a bunch of compressed files inside them.
Distributing a mod is as easy as giving somebody else a .pak file.

When put in specific directories (manged by the modloader) they will loaded by the game after the
main Astro-WindowsNoEditor.pak. Then they can either replace or modify existing parts of the
game or even add new files and items to the game.

Mod .pak files also include some extra data in the metadata.json file placed at the root of the
directory structure inside. This includes information like the mod name, author, where to get
updates and some special instruction for the mod integrator, which is responsible for avoiding
conflicts between mods.

Unreal Asset Files

All the actual game data like values, textures, models, some code and much more is stored in Unreal
asset files. They usually have the .uasset extension. There are two different types of asset files:

	Uncooked files. These files are used during developement and are what are stored in a Unreal
project. They can be easily opened and modified in the Unreal Editor.

	Cooked files. These files are included in distribution game builds and have a lot of data
stripped. Opening and modifying these files requires special tools because they are usually
generated from uncooked ones and not meant to be modified directly. But there are all that we
have for modding.

In most games cooked .uasset files also come with a .uexp for the same asset. This extra file
stores the bulk of the data for optimization.

Up until the Xenobiology Update (aka. Snail Update) Astroneer did not use .uexp files and bundled
all the data in the main .uasset file. This change broke a lot of mods.

File Structure and Paths

The files in .pak files in Unreal Engine games are always structured similarly. Here is how it is
in Astroneer.

root
├─Astro
│ ├─Config
│ │ └─...
│ ├─Content
│ │ ├─Animations
│ │ │ └─...
│ │ ├─Items
│ │ │ └─...
│ │ └─...
│ └─...
└─Engine
 └─...

All files important for the actual game are in the /Astro/Content directory. However paths in
assets don’t actually directly referece that. Instead the they use the /Game/... path which
gets remapped to /Astro/Content/... at runtime. Also Unreal uses forward slashes as path
separators.

When making a mod you would place an asset file
/Astro/Content/Mods/ModderName/MyModId/MyAsset.uasset in you .pak file but referece it as
/Game/Mods/ModderName/MyModId/MyAsset.uasset inside assets.

Tools For Creating Mods

Typically, mods are created using either UassetGUI or Unreal Engine directly. Each of these tools
provides benefits over the other.
UassetGUI, which was originally written for Astroneer modding, is a great way to quickly generate
a mod that involves small changes to the game, such as changing numbers. An example of this is
modifying the max speed of a rover, which is very easy to do with UassetGUI. UassetGUI’s main downside
is that it’s limited in capabilities for more advanced projects, such as adding new items to the game.
Your first tutorial for making mods will utilize UassetGUI.
Unreal Engine Editor 4.23.1 is also used to create mods, utilizing an environment similar to game
development on the platform. While it is a bit harder to learn than UassetGUI, and does not have all
of the game files available to it (yet), it allows for much more advanced mods to be created. Unreal
Editor also has less chance of causing mod conflicts due to how .uasset files are registered within
the modloader.
Using Unreal Engine Editor is recommended for advanced projects.

Items in Astroneer

One of the most common things you might want to do is tweak or make are items. Items in Astroneer consist
of two assets, ItemType and PhysicalItem.

	ItemType is used by Astroneer to get in item’s recipe, menu icon, item properties,
description, etc. Most of them are found in /Game/Items/ItemTypes/. They sometimes have the
suffix _IT.

	PhysicalItem is the object that is going to be created in the world. Most of them are found in
/Game/Components_*/ and /Game/Items/. They sometimes have the suffix _BP.

Also keep in mind that the Astroneer game files are very messy and it can be hard to find stuff.
Windows search is your biggest help.

Getting Help

If you ever need help or stuck with a mod you are trying to make ask in the
Astroneer Modding Discord [https://discord.gg/bBqdVYxu4k] in the #making-mods-help channel.

To get started go to the Setting up Modding Tools section.

Setting up Modding Tools

Contents

	Setting up Modding Tools

	Setting up Folders

	Setting up unreal_pak_cli

	Extracting the Game Files

	Setting up UAssetGUI

	Opening an Asset

Setting up Folders

Start by creating a folder AstroneerModding in your PC. A good location is your documents
folder. This folder must be on a drive with at least 10GB of free space. If you also want to
make mods with Unreal Engine later you will need another 30GB.

Setting up unreal_pak_cli

When working with .pak files you need some kind of program to extract and create them. We will be
using the community-created unreal_pak_cli program. The source code can be found
here [https://github.com/AstroTechies/unrealmodding/tree/main/unreal_pak_cli]. To download a
pre-built binary and some useful .bat files click HERE. (We will
be using this)

Once you have downloaded the .zip extract it to your AstroneerModding folder. Then go into the
unreal_pak_cli. You should see the .exe and two .bat files. We will be adding the bat files to
the Windows Send to window to speed up the modding workflow. This is not strictly neccessary and
use the .exe like any other cli tool.

Right click both .bat files and select Create Shortcut. Then press Win+R and enter
Shell:sendto. This will open a new window. Drag both shortcuts into that window. Then rename
them Repack folder with unreal_pak_cli and Unpack .pak with unreal_pak_cli.

Extracting the Game Files

First create a new folder in your AstroneerModding folder called GameFiles. This will be
where you will extract the game files to.

Next, you will need to find your Astroneer’s .pak file by going to where you have Astroneer
installed.

	The usual location for this is
C:\Program Files (x86)\Steam\steamapps\common\ASTRONEER\Astro\Content\Paks.

	If you have the Game installed anywhere outside the default Steam location you can find it on
Steam by right clicking on Astroneer then going to Properties and then
Local Files > Browse. From there go to the sub folder Astro\Content\Paks.

Copy the Astro-WindowsNoEditor.pak files to your GameFiles folder. Finally in your
GameFiles folder right click on the Astro-WindowsNoEditor.pak file and select
Send to > Unpack .pak with unreal_pak_cli. This may take a minute.

Setting up UAssetGUI

UAssetGUI is tool for viewing and editing cooked .uasset files. Downlaod the latest version from
GitHub [https://github.com/atenfyr/UAssetGUI/releases]. Extract the .zip file to your
AstroneerModding folder.

Opening an Asset

Go to AstroneerModding\GameFiles\WindowsNoEditor\Astro\Content\Items\ItemTypes and double click
on FloodLight_IT.uasset. Since you probably have not opened one of these files before Windows
will ask you for a program. Select “more apps,” then “Look for another app on this PC.” Browse to
and select the UAssetGUI.exe we extracted earlier. This will set UAssetGUI as the default
program for .uasset files, which you will need for making your first mod.

To make your first mod continue with Basic Modding.

Basic Modding

Contents

	Basic Modding

	How Making a Mod Works

	Setting up Folders

	Creating metadata.json File

	Finding the Asset to modify

	Modifying the Asset

	Packing the Mod

	Installing the Mod

	Verifying the mod works

In this section you will learn how to create your first mod. We will start by simply reducing the byte
cost of the Floodlight.

How Making a Mod Works

Using UAssetGUI is a fairly simple way to create a mod. The process, which is covered in detail
below, involves making a copy of Astroneer’s file structure (while only containing the necessary
files) inside your mod folder. Then, UAssetGUI is used to modify those game files to your liking.
Once the metadata file is set up correctly, the mod folder is packaged using unreal_pak_cli, and
your mod is ready to use.

While the ways in which the game files are modified will vary, most other methods of creating
mods involve a similar process as this one.

Setting up Folders

First start by creating a new folder called TutorialMod in your AstroneerModding folder.
We will be using that folder in this and future tutorials.

Next create another folder inside the TutorialMod folder called 000-TutorialMod-0.1.0_P.
This name matches what the mod .pak file will later be called. You can read more on the
specifications for mod .pak files in the .pak Mod File Names section of the documentation.

Creating metadata.json File

Each mod must have a metadata.json file at the root. This file contains information about the mod.
In your 000-TutorialMod-0.1.0_P folder create a file called metadata.json. Then paste the
following JSON into the file. Make sure to replace YOUR_NAME with your name.

{
 "schema_version": 2,
 "name": "Tutorial Mod",
 "mod_id": "TutorialMod",
 "author": "YOUR_NAME",
 "description": "A tutorial mod.",
 "version": "0.1.0",
 "sync": "serverclient"
}

Finding the Asset to modify

Because we are modifying an item that is already in the game we need to find the asset of the item.
We want to change the byte cost of the floodlight so we need to find the ItemType asset of the
floodlight. Sometimes finding the proper file can hard, but Windows search can help.

The asset file we are looking for is located at
GameFiles\Astro-WindowsNoEditor\Astro\Content\Items\ItemTypes\FloodLight_IT.uasset and
GameFiles\Astro-WindowsNoEditor\Astro\Content\Items\ItemTypes\FloodLight_IT.uexp.
It is important to remember that each asset is split into two files and you always need to keep
both together. Now we are going to copy the two files over to our folder so that we can modify them.
Copy them to
TutorialMod\000-TutorialMod-0.1.0_P\Astro\Content\Items\ItemTypes\FloodLight_IT.uasset and
TutorialMod\000-TutorialMod-0.1.0_P\Astro\Content\Items\ItemTypes\FloodLight_IT.uexp.
You will have to create the folders if they do not exist yet. It is very import that the files have
the exact same folder structure as the game.

Never directly modify the files in your GameFiles folder. Should you wish to create a different
mod utilizing those same files, you will have to recreate the entire GameFiles folder if you
accidentially save over the original files.

Modifying the Asset

Now open the FloodLight_IT.uasset file in the TutorialMod folder using UAssetGUI.

Each asset is made from multiple sections. The most interesting ones are usually Name Map,
Import Data and most importantly the Export Data section. Assets can have a few to hundreds
of exports. Exports are roughly labeled with what they contain. Finding the correct export for
what you are looking for requires some practice. For small assets like this one, you can go to
View > Expand All to see all the subproperties of the asset.

Here you will quickly spot the ItemCatalogData export. This is the export that contains
information like unlock cost and other stuff relevant for the catalog. If you are unable to find what
you are looking for, you also can search for specific text in UAssetGUI by pressing ctrl+f and
typing your text into the search bar.

Each export has multiple subproperties arranged in a tree structure. You can see the subproperties by
expanding the export. Click on ItemCatalogData(7) to see the contents of the catalog data.
This export has a very simple structure.

At the very top of the table view there is an UnlockCost property with a number to the right.
Simply the change the number to what amount of bytes you would like the floodlight to cost. For
example, 500.

Then simply press Ctrl+S to save the file, or click on File > Save. You should see two
.bak files appear. Ignore these files, they are simply backup files and are ignored by the
software.

Packing the Mod

Close UAssetGUI and go back to your TutorialMod folder. Right click on the
000-TutorialMod-0.1.0_P folder, then select Send to > Repack folder with unreal_pak_cli.
This will create a 000-TutorialMod-0.1.0_P.pak file in the same folder.

Installing the Mod

Double-check that the .pak file in the TutorialMod folder is named correctly. If not, rename it
to 000-TutorialMod-0.1.0_P.pak. Once you have verified that the name is correct, simply drag the
newly created 000-TutorialMod-0.1.0_P.pak file onto the Modloader window and you should see
Tutorial Mod appear in the mod list. Make sure it is enabled in the modloader window.

Verifying the mod works

If the mod loads into the modloader without issues, start your game. If the modloader has issues loading the mod, double check that you followed the tutorial exactly. Then head to the catalog and check that the floodlight is now costs 500 bytes. If your mod has other issues that you need additional help with, joining the Astroneer Modding Discord is your best bet.

Setting up the Modding Kit

Contents

	Setting up the Modding Kit

	Visual Studio

	Unreal Engine 4

	Modding Kit

	Wwise (optional)

	Generating project files

	Developing Mods

These are the requirements for making custom items with Unreal Engine and the Modding Kit.

Visual Studio

Download Visual Studio [https://visualstudio.microsoft.com/downloads/] 2017 or higher.

When running the installer, on the “Workloads” page make sure you select “Desktop & Mobile >
Desktop development with C++” and “Gaming > Game development with C++”.

If Visual Studio is already installed you can run the installer and press modify to add the
necessary workloads.

Unreal Engine 4

Open Epic Games launcher and go to “Unreal Engine” tab.

Next go to Library and add a new engine version.

Select 4.23.x where x can be any number, and press install.

Modding Kit

To develop your mods you will need a modkit which can be downloaded from
this link [https://github.com/AstroTechies/ModdingKit].

If you are familiar with version control software you should clone it for easier updates.

Wwise (optional)

Astroneer uses Wwise as its sound engine. If you want to make mods which play sounds you need to install Wwise.

Go to Wwise [https://www.audiokinetic.com/en/products/wwise] website and head to Get Wwise -> Download Wwise.

If you don’t already have an account, create one. After wwise installed has finished downloading, open it and select WWISE in the top bar.

Click on latest and change it to All > 2019.1 > 2019.1.8.7173 and press install. Once presented with options select these:

	Packages

	Authoring

	SDK (C++)

	Deployment Platforms

	Apple

	macOS

	Microsoft

	Windows

	Visual Studio 2017

	Visual Studio 2019

After it has finished installing go to Unreal Engine tab in the top bar. There press on the burger menu and Browse For Project.

Select Astro.uproject in the file picker.

Now press Integrate WWise into project. Here select All > 2019.1 > 2019.1.8.7173.

In the wwise project path field press on the triangle on the right side and click New.

Now press the Integrate button.

Generating project files

To generate the project files we will need to run the following command:

"UE_INSTALL_PATH\Engine\Binaries\DotNET\UnrealBuildTool.exe" -projectfiles -project="PATH_TO_PROJECT\\Astro.uproject" -game -rocket -progress

Open cmd in your project directory and copy this inside cmd. Remember to replace UE_INSTALL_PATH with your unreal engine installation folder which is usually found at C:\\Program Files\\Epic Games\UE_4.23\\.

And remember to change PATH_TO_PROJECT with path to the modkit.

Example:

"C:\Program Files\Epic Games\UE_4.23\Engine\Binaries\DotNET\UnrealBuildTool.exe" -projectfiles -project="C:\\Users\\username\\Documents\\Astro.uproject" -game -rocket -progress

Run the command, and then open the Astro.uproject file and if it asks to build unbuilt modules press yes and wait.

Developing Mods

You can now start with Adding Custom Items with the Unreal Editor.

Adding Custom Items with the Unreal Editor

Contents

	Adding Custom Items with the Unreal Editor

	Creating the Mod Folder

	Creating an Item

	Creating the PhysicalItem

	Creating the ItemType

	Linking ItemType and BP together

	Cooking the Mod

Creating the Mod Folder

After opening the project in unreal editor you will need to make a folder for your mod.

In the content browser head to Mods folder and create a folder YOUR_USERNAME, and open that folder.

You probably would want to change YOUR_USERNAME to your actual username.

Inside that folder create a folder called TutorialMod and open it.

Creating an Item

Items in Astroneer consist of two components, ItemType and PhysicalItem.

ItemType (you’ll use an _IT suffix for these files) is used by Astroneer to get your item’s recipe, menu icon, item properties, description, etc.

PhysicalItem (you’ll use an _BP suffix for these files) is the object that is going to be created in the world.

These are different from the 3D mesh that you’ll import, which has no suffix in its name and stores the 3D model of the object you’ll see inside the game.

Creating the PhysicalItem

Your first step is to create the PhysicalItem blueprint class. Start by making sure Unreal Editor is in the TutorialMod folder before proceeding.

Click on “Create a blueprint class” and a pop-up window will appear. Click on “open All classes” if it isn’t opened already.

In the search bar above the class type list, type in “PhysicalItem” and select it once it appears. This will determine what the blueprint will inherit from.

Then, create the class. Once the dialog window closes, you should be able to type in the name of the blueprint. Set it to ExampleItem_BP - it must

match this exactly. Then press enter to save your name, and double-click on it to open up the PhysicalItem’s settings menu.

First of all we want to set the 3D model for that item, so that we have something to look at inside the game.

For that we will need to import the mesh

Importing the Mesh

	Open your mod folder in the Content Browser

	Download this example mesh exampleMesh.fbx

	Drag&drop your mesh into the Content Browser and click Import all at the bottom right. Don’t change any settings in this window.

	Open the mesh and in the Details tab search for Has navigation Data and uncheck that checkmark.

Warning

If you don’t uncheck Has navigation Data the game will crash when loading your mod.

After importing the mesh, open the PhysicalItem again that you created earlier, and click on StaticMeshComponent in the left-hand side menu.

Note

If you don’t see the StaticMeshComponent click on Open Full Blueprint Editor

There in the Details tab, set your mesh in Static Mesh field to the example mesh you imported.

Click on Compile and then Save.

Creating the ItemType

Now that we have created the PhysicalItem, it’s time to make the ItemType for it.

Create a second blueprint class, and in the creation dialogue open All classes.

Select ItemType to inherit from, create the class, set its name to ExampleItem_IT, and open the class.

This is a simple item so we will leave most of the options untouched, you can experiment with them yourself and see what they do.

	Set Pickup Actor to be ExampleItem_BP.

	
	Open Construction Recipe
	
	Press “+” on the Ingredients field.

	Set Item type of the ingredient to Astronium

	Set Count of the ingredient to 1.

	Set Catalog Data to Item Catalog Data

	Is Base Item in Catalog Data is used to determine whether this item will create it’s own line inside the catalog or use an existing one from a base item.

	Base Item Type in Catalog Data is used to determine what row of the item catalog that the item will be listed in.

	Varitation Sequence Number in Catalog Data is used to determine the order in which the item will be listed in the item catalog.

	Catalog Mesh in Catalog Data is used to determine the mesh that will be displayed in the item catalog.

Warning

If you enable Is Base Item and then set Base Item Type to equal another object, your item WILL NOT show up in the catalog.

	Set Base Item Type to Consumable_JumpJet_IT so it gets listed near jetpacks and hoverboards.

	Untick Is Base Item because you are using the same row as the jetpacks, which already has a base item.

	Set Catalog Mesh to the mesh we imported earlier.

	Set Crate Overlay Texture to ui_icon_package_drill. This is used to determine the icon that will be displayed on the packaged item.

	Set Widget Icon to ui_icon_comp_drill. This is used to determine the icon that will be displayed in the item catalog and on hovering on the item.

Open Control Symbol section and fill the fields out like this:

	Name: ExampleItem

	All caps Name: EXAMPLEITEM

	Tooltip Subtitle: Example Item

	Description: This is an example item.

These four entries do not have to match the names of your objects, they are used to determine the text used in the research catalog and tooltips in-game.

Linking ItemType and BP together

Now open the ExampleItem_BP yet again, and click on ItemComponent.

On the right open the Item Component dropdown, there, set the Item Type to ExampleItem_IT.

Cooking the Mod

Remember to save every asset you have changed before cooking.

Click on File > Cook Content for Windows

After the content has been cooked, create a folder in file explorer with the name 000-TutorialMod-0.1.0_P and open this folder.

Note

This folder must be outside of unreal project.

Inside this folder create a file called metadata.json.

This file is responsible for telling the modloader where to find mod files for certain parts of the mod.

Fill this file out like this

{
 "schema_version": 2,
 "name": "Tutorial Mod",
 "mod_id": "TutorialMod",
 "author": "YOUR_NAME",
 "description": "A tutorial mod.",
 "version": "0.1.0",
 "sync": "serverclient",
 "integrator": {
 "item_list_entries": {
 "/Game/Items/ItemTypes/MasterItemList": {
 "ItemTypes": [
 "/Game/Mods/YOUR_USERNAME/TutorialMod/ExampleItem_IT"
]
 },
 "/Game/Items/BackpackRail": {
 "PrinterComponent.Blueprints": [
 "/Game/Mods/YOUR_USERNAME/TutorialMod/ExampleItem_BP"
]
 }
 }
 }
}

Replace YOUR_USERNAME with your name.

/Game/Items/ItemTypes/MasterItemList$ItemTypes contains ItemTypes for all items so we register our ItemType with this.

/Game/Items/BackpackRail$PrinterComponent.Blueprints contains ItemTypes that can be crafted so we need to register here too.

More info about the format can be found in Modding standards

In this folder, also create a folder structure like this Astro/Content/Mods/YOUR_USERNAME.

Now go to the unreal project folder and navigate to Saved/Cooked/WindowsNoEditor/Astro/Content/Mods/YOUR_USERNAME and copy TutorialMod folder to the folder we created previously.

So that the folder structure looks like this:

000-TutorialMod-0.1.0_P
 ├───metadata.json
 │
 └───Astro
 └───Content
 └───Mods
 └───YOUR_USERNAME
 └───TutorialMod

Warning

Files in ModdingKit/Saved/Cooked/WindowsNoEditor/Astro/Content/Mods/YOUR_USERNAME and UE_PROJECT/Content/Mods/YOUR_USERNAME are different.
Where UE_PROJECT is the path to unreal project.
The first location contains the cooked files, while the second one contains the uncooked ones.
You MUST copy from the first location because the game only accepts cooked ones.

Now that the mod structure is complete, time to pack the mod.

For packing the mod we will be using unreal_pak_cli.

To make life easier for us we have created unreal_pak_cli that will help us pack your mod folder, download and extract them.

Now that the scripts and the program are extracted we can pack our mod. Open two file explorer windows, one with the repack.bat file, and the other showing your mod folder.

Next, drag and drop your project’s main folder (000-TutorialMod-0.1.0_P) onto the repack.bat file.

After unreal_pak_cli finishes you should be able to see 000-TutorialMod-0.1.0_P.pak file.

To load this mod, drag&drop it onto the modloader window and check the checkbox to enable it.

After all this work you should be able to print your first item.

Picking Names

Contents

	Picking Names

	Naming is hard

	Allowed Characters

	What you need to choose

	Author ID

	Mod Name and ID

	Mod ID extension

Naming is hard

Naming things is hard. That is something everyone has experienced at some point. But choosing good
names for your mod(s) is even harder becasue they also need to be descriptive, short and readable. So
here are some tips on how to do it right.

Allowed Characters

All IDs can generally only contain upper- and lowercase latin characters and the numbers 0-9. This
restriction exists becasue they need to work in URLs and filepaths but also to avoid confusion.

What you need to choose

	Your Author ID (only once of course)

	A mod ID

	A name for the mod

Author ID

An Author ID is used to uniquely identify a person creating mods. It should be whatever nickname
you have choosen condensed into the allowed characters. Note that this one is rarely shown to users
and the one shown to users can contain basically any characters.

Mod Name and ID

Whatever you choose to call your mod, it has to clearly describe what the mod it/does while also
being relatively short. Especially the mod ID has to be readable to allow users to identify mod
files just by their file name.

It is recommend to use 2-3 full words. Do not use acronyms, unless they are already used by the
base game (like RTG). Also avoid shortening words except for stuff like Astroneer =>
Astro. The mod name should include spaces (unlike the ID) and can also be a bit longer.

Here are some good examples:

	RocketLauncher for Rocket Launcher Mod

	LavaLamp for Lava Lamp Mod

	MoreTradables for Mo’ Tradables

Here are some bad ones:

	QTRTG for Print QT-RTG. Here it is unclear what the mod does in the mod ID.

	Astronium for Super Astronium. Not even from the full name it is clear what the mod does.

	Pumpkin for PUMPKINS!!!. Again what does it do.

	6A1S. What does this even mean?

Mod ID extension

You can extend your mod ID with your author ID like this modid.authorid. In practice it looks
like this PickupRovers.Konsti. This is to differentiate two mods with the same base mod ID that
are by different authors. This new string will be the new mod ID used in both filename and
metadata. Also this is the only time a single dot is allowed in IDs. Note that this is a relatively
new addition and not all programs/website will support it.

Adding Missions

Contents

	Adding Missions

	Adding the Mission Trailhead

	Adding Mission Trailhead to the Mod

Adding the Mission Trailhead

Right click in the Content Browser and add a folder called Missions.

Inside this folder create a Data Asset

Note

Data Asset is located inside Miscellaneous in the right click menu.

Here select the AstroMissionDataAsset class and name your asset MissionTrailhead-TutorialMod.

Inside this asset you can define as many missions as you want, click on “+” to add a new mission.

Here we will fill out some data to tell Astroneer where to put our mission.

	MissionId: TutorialMod-TestItemMission

	MissionCategory: TutorialMod

	Description: A mission that unlocks TestItem

	Notification Color: Astro Blue

	Byte Reward Value: 1000

	Notification Icon: ui_icon_nug_astronium

	Notification Color is the color of the notification that will be shown when you complete the mission.

	Notification Icon icon of the notification that will be shown when you complete the mission.

	Prerequisite Missions is a list of missions that must be completed before this mission can be completed.

	Next missions missions that will be unlocked after this mission is completed.

Now let’s actually add objectives, for this tutorial we will be requiring the player to collect 2 pieces of clay.

Press “+” on Objectives

	Description: Collect 2 pieces of clay

	Add a new Target type and set it to Clay

	Value: 2.0

	Progress Notify Threshold: 2.0

	Objective Type: Harvest Resource

	Value determines the amount of resource we want to collect for this objective

	Progress Notify Threshold determines the amount of resource we need to collect to get the progress notification.

And now we can go ahead and add the reward, in this case we will give the player the TestItem.

Press “+” on Rewards and set the reward type to be ExampleItem_BP and the value to 1.

This should provide us with a basic mission for the player to complete.

Now we must add it to our mod.

Adding Mission Trailhead to the Mod

As usual cook the content and move it to the mod folder, metadata.json will be used from Adding Custom Items with the Unreal Editor with some changes.

We need to add this to our metadata for the modloader to add it into Astroneer mission system.

"mission_trailheads": [
 "/Game/Examples/TutorialMod/Missions/MissionTrailhead-TutorialMod"
]

So the file looks like this:

{
 "schema_version": 2,
 "name": "Tutorial Mod",
 "mod_id": "TutorialMod",
 "author": "YOUR_NAME",
 "description": "A tutorial mod.",
 "version": "0.1.0",
 "sync": "serverclient",
 "integrator": {
 "item_list_entries": {
 "/Game/Items/ItemTypes/MasterItemList": {
 "ItemTypes": [
 "/Game/Examples/TutorialMod/ExampleItem_IT"
]
 },
 "/Game/Items/BackpackRail": {
 "PrinterComponent.Blueprints": [
 "/Game/Examples/TutorialMod/ExampleItem_BP"
]
 }
 },
 "mission_trailheads": [
 "/Game/Examples/TutorialMod/Missions/MissionTrailhead-TutorialMod"
]
 }
}

Now cook the mod as in Adding Custom Items with the Unreal Editor and check it out!

Adding Mission Panels to items

Contents

	Adding Mission Panels to items

	Creating the Mission Panel

	Creating & Linking the Supply Drop Points

	Result

Creating the Mission Panel

Note

This is an advanced topic, so it is preferred that you already have some experience modding Astroneer.

In Unreal Engine, Starting from the Content folder in the ModdingKit Project, right click in the Content Browser and create a folder named ControlPanels then in that folder create another called Missions, and after creating those directories the path should now look something like this: /Content/ControlPanels/Missions/ in the Content Browser.

Note

Any asset created in the /Content/ControlPanels/Missions/ directory, is not to be packed with the mod itself, we are creating these assets just for referencing purposes.

Go to the /Content/ControlPanels/Missions/ directory that you just created in the Content Browser, and right click in the Content Browser to create a new BP Class that inherits from the ControlPanel Class, and name it MissionsControlPanel.

[image: ../_images/MissionsOnItems-BPCreateMenu.png]
[image: ../_images/MissionsOnItems-creatingMissionsControlPanel.png]
In the asset, create a variable and name it exactly this DisplayWidgetClass, then in the properties of the variable set it to be a Widget Class Reference, after doing that now compile and save this asset.

[image: ../_images/MissionsOnItems-CreateVar.png]
[image: ../_images/MissionsOnItems-ChangeVarClass.png]
Now back to the Missions folder in the Content Browser, right click in the Content Browser and create a new BP Class that instead now inherits from the MissionsControlPanel and name it MissionsControlPanel_SupplyDrop.

[image: ../_images/MissionsOnItems-creatingSupplyDropPanel.png]
Now in this asset, create a new function and name it InitSupplyDropPoints and then add an input which should be an array of Scene Component Object References, now compile and save this asset.

[image: ../_images/MissionsOnItems-funcCreation.png]
[image: ../_images/MissionsOnItems-changefuncinputtype.png]
Again, back to the Missions folder in the Content Browser, now right click in the Content Browser and create a Widget Blueprint by going to User Interface -> Widget Blueprint in the right click menu, and name it MissionPanelPrimary

[image: ../_images/MissionsOnItems-WidgetCreation1.png]
[image: ../_images/MissionsOnItems-WidgetCreation2.png]
After creating the assets and the functions/variables for them, go to your item’s BP, and create a Child Actor Component in the BP, position it how you like and set the Child Actor Class to the MissionsControlPanel_SupplyDrop class.

[image: ../_images/MissionsOnItems-CreateChildActorComp.png]
[image: ../_images/MissionsOnItems-SetChildActorClass.png]
Now in the Child Actor Template dropdown, click on the Default dropdown and set the DisplayWidgetClass’s class to MissionPanelPrimary

[image: ../_images/MissionsOnItems-SetDisplayWidgetClass.png]

Creating & Linking the Supply Drop Points

In your items BP create 3 new Scene Components and name them accordingly (ex. SupplyDropPoint 1, 2, 3)

[image: ../_images/MissionsOnItems-addSceneComponent.png]
Then in the BP Graph, add a Cast to MissionsControlPanel_SupplyDrop node, and get your Child Actor Component’s Child Actor by using the Get Child Actor and have the target be the Child Actor Component, and connect the Actor Object Reference from the Get Child Actor node to the Object input on the Cast to node.

Now connect the Cast to node’s Exec input to somewhere on the Begin Play Event, and then call the InitSupplyDropPoints using the As MissionsControlPanel_SupplyDrop output.

Get the SupplyDropPoints made earlier and use a Make Array node to turn all 3 into an array and connect the array output to the Drop Points input on the function

(use image below for reference if confused)

[image: ../_images/MissionsOnItems-initsupplydroppoints.png]

Result

There you have it, now you can compile and save, package the mod and you should have a working mission panel on your item!

[image: ../_images/MissionsOnItems-result.png]

Diegetic UI

Contents

	Diegetic UI

	Making Diegetic UI

	Adding Control Panel to the item

Making Diegetic UI

To add diegetic UI to your object we will need another actor.

This actor will be the actor that displays our ui.

Create an actor with parent class of ControlPanel.

First things first we need to have a component that describes orientation when the actor is displayed to the player.

For that we will add a Scene Component, position and rotate it as you wish.

Set the name of this component to CrackedOrientation.

For this component to actually do something we must specify its name inside CrackableActorComponent.

Open CrackableActorComponent and on the right side you should see a Cracked Orientation Component dropdown, open that dropdown.

In the dropdown set Component Property to be CrackedOrientation.

Also set these parameters:

Method: Set this to Hover Face Camera. This will make the object always follow camera when examining.
Click to close: Uncheck this. This will prevent the ui from closing when we click anywhere.
Cracks only on examine: Check this.
Screen scale ratio: Set this to 1.8. This determines the size of our object on screen when examining it.
Camera space offset: Set this to 450.0 175.0 -20.0. This determines the position of our object on screen.
Pivot angle: Set this to 0.

But this will not do anything useful unless we setup ClickableComponent to actually open our ui.

Open ClickableComponent and set the following parameters:

Slow virtual cursor on hover: Uncheck this.
Has use interaction by default: Check this.
Use action requires hold: Uncheck this.
Default use context: Set this to UC Examine. This deterimines which action will be displayed to the player when they hover over the object.

Now we need something to actually render on our screen, for this we will be using this example panel panel.fbx.

When importing this mesh to unreal make sure to check Skeletal Mesh under Mesh section and set the skeleton to None.

Now open the Mesh dropdown in SkeletalMesh component. Set Skeletal Mesh to be the mesh we just imported.

Note

We are using a skeletal mesh, because if we use a static mesh for this, it will not be rendered in game.

Warning

If the Camera or Visibility channel collision will be enabled on any of the child components in this blueprint, it will cause your camera to glitch.

Adding Control Panel to the item

Now that we created the control panel it’s time to add it to the item.

Open your item blueprint.

Note

If you were following the previous tutorial it is probably ExampleItem_BP

In the item blueprint add a Child Actor component. On this component set the Child Actor Class field to the control panel we created previously.

Remember to position child actor component in the viewport where you want it to be.

We also need to set up ClickableComponent in this blueprint too.

Open ClickableComponent and set the following parameters:

Slow virtual cursor on hover: Uncheck this.
Has use interaction by default: Check this.
Use action requires hold: Uncheck this.
Default use context: Set this to UC Examine. This deterimines which action will be displayed to the player when they hover over the object.

At this point, the diegetic UI is done, so cook the mod and test it!

Procedural Generation

Contents

	Procedural Generation

	Procedural Generation

	Writing the metadata

Procedural Generation

Note

This is an advanced topic, so it is preferred that you already have some experience modding Astroneer.

Procedural generation in astroneer is done using their custom generation graph that for shipping games gets compiled to low-level code.

Thus we cannot easily change a lot of its behaviors, but what we can do, is use already existing behaviors and modify them a little bit.

To generate our object we must have a Procedural Placement and a Procedural Modifier class in our mod files.

Procedural Modifier is like a model of spawning, the only settings we can change are Procedural Placement which is perfect because that is what we will be doing.
Procedural Placement is placements that are actually responsible for spawning your items.

Before creating them though, we must know that there is a restriction on filenames that dictate procedural generation in your mod.

This restriction comes from the Astroneer has a lot of its generation code compiled to low-level asm.

In your modkit you can find the file that describes procedural generation names restrictions in Content/Mods/localcc/TPuzzle/proceduralGenerationModels.json.

This is a json file that contains an object. Keys in this object are valid names for Procedural Modifier classes.

Keys can also be treated as “Models” that we can choose from to get different spawning behaviors.

Values for each key are valid names for Procedural Placement classes that the Procedural Modifier can contain.

Note

Models work cross-biome but not cross-planet (e.g. you can use Forests_Terran_Props for the Plains biome on Terran planet, but you cannot use it for Arid planet)

Planets in this tutorial are called not by their name, but by their type, because that is how the game stores them.

To create those files, right click in the content browser go to Miscellaneous and select Procedural Modifier.

We will name this one Plains_Terran_Puzzles.

Then right click in the content browser again, and this time select Procedural Placement.

We will name this one ObjPl_Puzzle_Surface_Terran.

Open this asset and set the following parameters:

	Seed: Set this to whatever.

	Radius: 600. Radius determines how far objects will be spawned from eachother, treat is if it was objects rarity.

	Max Projection Distance: 1500 This is probably max distance the objects can be from eachother.

Warning

Radius should always be <= Max Projection Distance, otherwise no objects will be spawned.

Now the fun part, spawning the objects. Open variants and click +.

In this variant set the following parameters:

	Selection Weight: 1.0. This probably determines the chance for this variant to spawn in case there is more than one variant.

	Placement Actor: The actor you want to spawn.

	Item Type: This is for resources, if you want custom resource nodes you should set this to the resource type you want to spawn, and Placement Actor to Decorator_MineralFlecks.

	Orientation: Align to planet up. This determines how your object will be aligned when spawned.

	Random Yaw: Max object random yaw when spawning.

	Random Pitch: Max object random pitch when spawning.

	Uniform scale: Check this.

	Scale XYZ: Set min to 1.0 and max to 1.0. This will choose a random scale between min and max when spawning your object.

	Density scaling slop: Set min to 1.0 and max to 1.0.

	Cull distance: Set min to 23000` and max to ``25000. This determines how far away the spawned object can be from the camera before it is culled.

	Enable Density Scaling: Uncheck this.

	Cast Shadow: Check this. This determines whether the spawned object will cast shadow.

	Cast Shadow as Two Sided: Uncheck this. This determines whether the spawned object will cast shadow as if it had a two-sided shader.

	Receives decals: Uncheck this.

	Use as occluder: Uncheck this. This probably should be checked for very large objects.

	Should override destruction effects: Uncheck this.

After setting up the Procedural Placement we need to add it to the Procedural Modifier.

Open your Procedural Modifier asset and add a compiled placement. Set the compiled placement to the one we just created.

Cook the mod files and copy them over to the mod directory.

Writing the metadata

Procedural generation requires a metadata entry to work.

This is an example of what your file should look like

{
 "schema_version": 2,
 "name": "ExampleMod",
 "mod_id": "ExampleMod",
 "author": "YOUR_NAME",
 "description": "An Example Mod",
 "version": "0.1.0",
 "sync": "serverclient",
 "integrator": {
 "item_list_entries": {
 "/Game/Items/ItemTypes/MasterItemList": {
 "ItemTypes": [
 "/Game/Mods/YOUR_NAME/TutorialMod/ExampleItem_IT"
]
 }
 },
 "biome_placement_modifiers": [
 {
 "planet_type": "Terran",
 "biome_type": "Surface",
 "biome_name": "Plains",
 "layer_name": "None",
 "placements": [
 "/Game/Mods/YOUR_NAME/TutorialMod/Plains_Terran_Puzzles"
]
 }
]
 }
}

This will add the procedural modifier to the plains biome on a terran planet.

To get which biomes/layers you can use on which planets there is a file at Content/Mods/localcc/TPuzzle/biomeData.json.

For example we want to add something to the valleys biome on exotic planet. In the file we will see something like this:

{
 "Exotic": {
 "SurfaceBiomes": {
 "Hills_Exotic": {
 "Layers": [
 "None"
]
 },
 "Valleys_Exotic": {
 "Layers": [
 "None"
]
 },
 "Rolling_Exotic": {
 "Layers": [
 "None"
]
 },
 "Mountains_Exotic": {
 "Layers": [
 "None"
]
 }
 },
 "CrustBiome": {
 "Layers": [
 "CrustExotic1",
 "CrustExotic2",
 "CrustExotic3",
 "CrustExotic4"
]
 }
 }
}

To add a procedural modifier to a biome we must know planet_type, biome_type, biome_name and layer_name.

In this file we find an object with key Exotic, the key corresponds to planet_type.

In this object we see two biome types, SurfaceBiomes and CrustBiome. We know that valleys are a surface biome, so we look inside the SurfaceBiomes object.

Also note that this means that biome_type is Surface.

Here we can see all of the avaiilable surface biomes, we want valleys so look at Valleys_Exotic, this becomes our biome_name.

This biome contains only one layer, but we still must specify it, in this case it’s None.

But now that we chose the biome, we must know that file names that we chose previously do not match the one permitted for exotic planet, this must be fixed.

Rename Plains_Terran_Puzzles to Valleys_Exotic_Puzzles.

Also rename ObjPl_Puzzle_Surface_Terran to ObjPl_Puzzle_Surface_Exotic.

Our metadata.json file should look something like this:

{
 "schema_version": 2,
 "name": "ExampleMod",
 "mod_id": "ExampleMod",
 "author": "YOUR_NAME",
 "description": "An Example Mod",
 "version": "0.1.0",
 "sync": "serverclient",
 "integrator": {
 "item_list_entries": {
 "/Game/Items/ItemTypes/MasterItemList": {
 "ItemTypes": [
 "/Game/Mods/YOUR_NAME/TutorialMod/ExampleItem_IT"
]
 }
 },
 "biome_placement_modifiers": [
 {
 "planet_type": "Exotic",
 "biome_type": "Surface",
 "biome_name": "Valleys_Exotic",
 "layer_name": "None",
 "placements": [
 "/Game/Mods/YOUR_NAME/TutorialMod/Valleys_Exotic_Puzzles"
]
 }
]
 }
}

Now cook the mod and verify you see objects spawning.

Index

Note

This site is not affiliated with System Era in any way and is exclusively community-run.
Also Astroneer has no official mod support and everything is community-built.

 This section of the documentation was primarily written by atenfyr [https://github.com/atenfyr].

Metadata V1 Standard

Warning

Metadata v1 standard is outdated, and it is recommended to use metadata v2.

The following describes Schema Version 1.

The metadata of mods is stored in the JSON format, as described in RFC 8259 [https://tools.ietf.org/html/rfc8259],
within a file with the name metadata.json. This file MUST be placed at the root directory within all .pak mods,
MUST be encoded in UTF-8, and MUST NOT include a byte order mark.

The following is a list of fields that can be specified within the root object of the metadata:

	schema_version: An integer that represents the current version of the metadata.json standard that is being used.
The schema version is incremented every time there is a backwards-incompatible change to the format.
This field SHOULD be specified, but if it is left unspecified, it defaults to 1, the initial version of the standard.

	name: A plain text display name for the mod. This field is represented as a string, and is REQUIRED.

	mod_id: The ID for the mod, which MUST be the exact same as the mod ID specified in the mod’s original file name, and follows the
same restrictions and recommendations described within the .pak Mod File Names section. This field is represented as a string and is REQUIRED.

	author: The author of the mod. This field is represented as a string, and is OPTIONAL, defaulting to an empty string.

	description: A plain text display description of the mod. This field is represented as a string, and is OPTIONAL, defaulting to an empty string.

	version: A version for the mod, which MUST be the exact same as the version found in the mod’s original file name,
and follows the same restrictions and recommendations described within the .pak Mod File Names section.
This field is represented as a string, and is REQUIRED.

	game_build: The Astroneer build for which the mod was built. This field is represented as a string, and is OPTIONAL. It defaults to null,
which is generally understood to mean that the mod works regardless of the current Astroneer build.

	sync: The sync mode between servers and clients. This field is represented as a string, and is OPTIONAL, defaulting to "serverclient".
Valid options are:

	none: Represents a mod which will be ignored while syncing.

	server: Represents a mod which will only be installed server-side.

	client: Represents a mod which will only be installed client-side.

	serverclient: Represents a mod which will be installed both server-side and client-side.

	homepage: A link to the homepage of the mod, a web page where users can go to to find more information about the mod or the author of the mod.
This field is represented as a string, and is OPTIONAL, defaulting to an empty string.

	download: An object with fields defining how to auto-update the mod. This field is represented as an object, and is OPTIONAL,
defaulting to {}, in which case auto-updating is disabled. These are the valid fields:

	type: The type of download. This field is represented as a string, and is OPTIONAL. Valid options:

	"index_file": This mod can be downloaded through an “index file” hosted on the web,
which contains the version info of any number of mods and their direct download web URLs.
See Index File Standard.

	url: If the type field is set to "index_file", this is set to the web URL of the mod’s index file.
This field is represented as a string, and is OPTIONAL.

	persistent_actors: A standard JSON array of asset paths to actors to bake into the level. This field is represented as an array,
and is OPTIONAL, defaulting to [].

	mission_trailheads: A standard JSON array of asset paths to mission trailheads (such as those found in the /Game/Missions folder)
to bake into the level. This field is represented as an array, and is OPTIONAL, defaulting to [].

	linked_actor_components: A standard JSON object, where the keys are game paths to Actors and the values are standard JSON arrays
that provide a list of game paths that the mod integrator will automatically attach to the specified Actors.
This field is represented as an object, and is OPTIONAL, defaulting to {}.

	item_list_entries: A standard JSON object where the keys are game paths to any asset and the values are standard JSON objects
where the keys are array names to modify in the asset and the values are standard JSON arrays which list entries to add to the specified
array as object pointers.
Alternatively, the array names to modify in the asset can be specified with the format category name.array name in order
to hone in on one particular array.
This field has a niche use, but is especially important in adding entries to commonly used item lists,
such as the list of items that a certain printer can print or the global master list that contains items that need to be referenced on
bootup for the research catalog or otherwise. This field is represented as an object, and is OPTIONAL, defaulting to {}.

As an example, here is a valid metadata.json file incorporating all of the defined fields:

{
 "schema_version": 1,
 "name": "Coordinate GUI",
 "mod_id": "CoordinateGUI",
 "author": "ExampleModder123",
 "description": "Adds a coordinate display that toggles with the F3 key.",
 "version": "0.1.0",
 "game_build": "1.19.143.0",
 "sync": "client",
 "homepage": "https://example.com",
 "download": {
 "type": "index_file",
 "url": "https://cdn.example.com/index.json"
 },
 "persistent_actors": [
 "/Game/ExampleModder123/ExampleGUI/ExampleGUIActor"
],
 "mission_trailheads": [
 "/Game/ExampleModder123/ExampleMod/MissionTrailhead04-Example"
],
 "linked_actor_components": {
 "/Game/Character/DesignAstro": [
 "/Game/ExampleModder123/ExampleGUI/MyActorComponent"
]
 },
 "item_list_entries": {
 "/Game/InitialUnlocks_Generous": {
 "ItemTypes": [
 "/Game/Items/ItemTypes/Components/LevelingBlock"
]
 },
 "/Game/Items/BackpackRail": {
 "PrinterComponent.Blueprints": [
 "/Game/Components_Terrain/LevelingBlock",
 "/Game/ExampleModder123/ExampleGUI/ExampleItem_BP"
]
 }
 }
}

As another example, here is a valid metadata.json file containing only the "schema_version" field and the REQUIRED fields:

{
 "schema_version": 1,
 "name": "My Tiny Mod",
 "mod_id": "TinyMod",
 "version": "0.1.0"
}

 _images/MissionsOnItems-changefuncinputtype.png
EQDEIars

4 Graph

Compact Node Title

Access Specifier

P
- ne =
o

Please press the + icon above to add param sters

_images/MissionsOnItems-creatingMissionsControlPanel.png
A Pick Parent Class

4 Common Classes

An Actor is an object that can be placed or spawned in the
) Actor
¢} world
8 p, A Pawn is an actor that can be possessed" and receive
§ Pawn input from a controller.
— A characteris a type of Pawn that includes the ability to
aracter walk around.
PEMRPSRIRIN A Fzyer Controller s an actor esponisibl for controling a
layer Controller Pawn used by the player.
W Game Mode Base defines the game being played, s rules,
ISR scoring, and other facets of the game type.
JIRSPSMRMNI A ActorComponent i a reusable component that can be
ERCUCLGUI added to any actor.
BPSMMI A Scene Component s 2 component that has a scene
.« Scene Component transform and can be attached to other scene components.

4 Al Classes

4Q) Object
@ Actor
40 X

® GateObjectControlPanel
O GenericSelectorContiolPanel
O GenericSelectorContiolPanel Repeat
® GenericsiiderControlPanel
@ WissionsCantiolPanel
® WissionsCantiolPanel SupplyDrop
@ ResearchModuleCantiolPanel
® spitterControlPanel
O Tv_cortiolpanel

23 tems (1 selected) © View Options~

-

_images/MissionsOnItems-WidgetCreation2.png
W state widgetsyle
The

_images/MissionsOnItems-addSceneComponent.png
+Add Component - XTI

R

", S Capture Component 2D

[Scene Capture Companent Cube
ity

Scene |
LT 4 scenecomponenthas a ar

Useful as a‘dummy’ compone
:Z“W:V: {Scene Components] (it
upply

_images/MissionsOnItems-initsupplydroppoints.png
"+ Cast ToMiasiomsControPaneSugphrep
> s Missions Cnol Panel Supply Do

»
Object CastFaied D> 2 &
Tt

Droppots

Ae Missions Contol Panel Suppy Drcp

_images/MissionsOnItems-result.png
B ACTIVE 4 || Re-Tooling

@ Printing Up (O UNLOCK, PRINT, AND ATTACH
BOOST MOD TO TERRAIN TOOL

b Tacing (O UNLOCK, PRINT, AND ATTACH

 Lights in the Distance ORILL MOD T0 TERRAIN TOOL

Upgrade to dig deeper, faster,
Q RECLAIMABLE o

& COMPLETE

_images/MissionsOnItems-creatingSupplyDropPanel.png
A Pick Parent Class

4 Common Classes

An Actor s an object that can be placed or spawned in the
world

8 p, A Pawn is an actor that can be possessed" and receive
& Pawn input from a controller.
» A characteris a type of Pawn that includes the ability to
Chaccle, walk around
T— A Player Controller is an actor responsible for controlling a
 Player Controller Pawn used by the player.
Game Mode Base defines the game being played, ts ules,

ISR scoring, and other facets of the game type.

An ActorComponent s a reusable component that can be

< Actor Component_ [RMEIVTRSRA

A Scene Component is a component that has a scene
transform and can be attached to other scene components.

4 Al Classes

Missions X
4Q object

® Actor

@ AstroNfgsioManager

@ ControlPanel

CIERERREEE] issions Control Panel

6 items (1 selected)

® View Options~.

-

_images/MissionsOnItems-funcCreation.png
“4Functions Override v w

A1 ConstructionScript

£ itsupplyDropPoints

Macros
Variables

Event Dispatchers

++ + +

Local Variables DropF

_images/MissionsOnItems-SetChildActorClass.png
4 Variable

Editable when Inherited

4Transform

P
Wobiy o siaic | 43 staioat) SERTTY

4Sockets

Parent Socket None. o x

4 Child Actor Component

Child Actor Class

4 child Actor Template

b Defaut
b ControlPanel
b Tick

© Rendering

b Replication
b Collision

© Input

b Actor

b LoD

b Cooking

4 Rendering

Visible

_images/MissionsOnItems-SetDisplayWidgetClass.png
4 Transform

Location + EERVEEES S -
fo— 11—
Wobiy o siaic | 43 staioat) SERTTY

4 Sockets

Parent Socket None. o x

4 Child Actor Component

Child Actor Class MissionsControlPanel_supi~ JICINORE E 3]

4 child Actor Template 1 fPanel.Supply o

4 pefauit

Display Widget class | [ETRNEIITE] ¢ © + X -
» Contapanel L5

b Tick

b Rendering
b Replication
b Collision

© Input

b Actor

b LoD

b Cooking

4 Rendering
Visible

_images/MissionsOnItems-CreateChildActorComp.png
+Add Component - XTI

Custom

£ Child Slot B

|| % control anel Button Gld Actor
Custom Child Actor

Utiity
£ Child Actor

+ Skeletalleshl
& Audio

it that

mpon

_images/MissionsOnItems-CreateVar.png
#f ConstructionScript
Macros +

4Variables
« DisplayWidgetclass

Event Dispatchers

_images/MissionsOnItems-WidgetCreation1.png
Folder
4 New Folder

Cr Class
. New C++ Class.

Import Asset
) Importto /Game/ControlPanels/Missions.

Create Basic Asset

S lueprint class

i Particle Systim

$ Substance

Create Advanced Asset.
Animation
Artificial Inteligent
Blendables
Blueprints
Datasmith
Editor tities
Foliage
Materials & Texture
Media
Miscellaneous
Paper2D
Physics
Prefabricator
Sounds

>
>
>
>
>
>
>
>
>
>
>
>
>
>

_static/file.png

nav.xhtml

 Table of Contents

 		
 Astroneer Modding Documentation

 		
 Modding standards

 		
 General Information

 		
 .pak Mod File Names

 		
 Index File Standard

 		
 Metadata standard

 		
 Making Mods

 		
 About Astroneer Modding

 		
 About Astroneer

 		
 Unreal Pak Files

 		
 Unreal Asset Files

 		
 File Structure and Paths

 		
 Tools For Creating Mods

 		
 Items in Astroneer

 		
 Getting Help

 		
 Setting up Modding Tools

 		
 Setting up Folders

 		
 Setting up unreal_pak_cli

 		
 Extracting the Game Files

 		
 Setting up UAssetGUI

 		
 Opening an Asset

 		
 Basic Modding

 		
 How Making a Mod Works

 		
 Setting up Folders

 		
 Creating metadata.json File

 		
 Finding the Asset to modify

 		
 Modifying the Asset

 		
 Packing the Mod

 		
 Installing the Mod

 		
 Verifying the mod works

 		
 Setting up the Modding Kit

 		
 Visual Studio

 		
 Unreal Engine 4

 		
 Modding Kit

 		
 Wwise (optional)

 		
 Generating project files

 		
 Developing Mods

 		
 Adding Custom Items with the Unreal Editor

 		
 Creating the Mod Folder

 		
 Creating an Item

 		
 Cooking the Mod

 		
 Picking Names

 		
 Naming is hard

 		
 Allowed Characters

 		
 What you need to choose

 		
 Author ID

 		
 Mod Name and ID

 		
 Mod ID extension

 		
 Adding Missions

 		
 Adding the Mission Trailhead

 		
 Adding Mission Trailhead to the Mod

 		
 Adding Mission Panels to items

 		
 Creating the Mission Panel

 		
 Creating & Linking the Supply Drop Points

 		
 Result

 		
 Diegetic UI

 		
 Making Diegetic UI

 		
 Adding Control Panel to the item

 		
 Procedural Generation

 		
 Procedural Generation

 		
 Writing the metadata

_images/MissionsOnItems-BPCreateMenu.png
Folder
4 New Folder

Cr Class
. New C++ Class.

Import Asset
) Importto /Game/ControlPanels/Missions.

Create Basic Asset

Blueprint

==l L3

i Particle System

$ Substance

Create Advanced Asset
Animation
Arificial Inteligence
Blendables
Blueprints
Datasmith
Editor tities
Foliage
Materials & Textures
Media
Miscellaneous
Paper2D
Physics
Prefabricator
Sounds

User Interface

_images/MissionsOnItems-ChangeVarClass.png
Parent class. Control Pane

EYDEETE
senoas O =3

4 Variable

Instance Editable
Blueprint Aead Only
Tooltip

Expose on Spawn
Private
Expose to Cinematics

Category Default

Replication

.

Replication Condition

4 Default Value

Display Widget Class ~ [[NRg ® O + %

_static/minus.png

_static/plus.png

